i see decisiontreeclassifier accepts criterion='entropy', means must using information gain criterion splitting decision tree. need information gain each feature @ root level, when split root node.
you can access information gain (or gini impurity) feature has been used split node. attribute decisiontreeclassifier.tree_.best_error[i]
holds entropy of i-th node splitting on feature decisiontreeclassifier.tree_.feature[i]
. if want entropy of examples reach i-th node @ decisiontreeclassifier.tree_.init_error[i]
.
for more information see documentation here: https://github.com/scikit-learn/scikit-learn/blob/dacfd8bd5d943cb899ed8cd423aaf11b4f27c186/sklearn/tree/_tree.pyx#l64
if want access entropy each feature (at split node) - need modify function find_best_split
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#l713
Comments
Post a Comment